NTC

NTC THERMISTOR SPECIFICATION

TYPE: MF5A-3

1, GENERAL

This specification defines characteristics, dimension and main condition of the NTC thermistor SJMF5A-3.

2, THERMISTOR CHARACTERISTICS

Item	Sign.	Char.											Unit	Tol.
$\begin{aligned} & 2.1 \\ & \text { Resistance } \end{aligned}$	R25 ${ }^{\circ} \mathrm{C}$	1	2.2	3.3	4.7	6.8	10	22	47	68	100	470	K Ω	5\%
$\begin{aligned} & 2.2 \\ & B \text {-value } \end{aligned}$	B25/50	3270	3400	3470	3470	3950	3950	3950	3990	3950	3950	4380	K	2\%
2.3 Thermal time constant	τ	10	10	10	10	10	10	10	10	10	10	10	s e c	Max
2.4 Dissipationonstant	δ	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	$\mathrm{mW} /{ }^{\circ} \mathrm{C}$	min

3, 3.1 Operating temp. (Tw): $-30 \sim 100^{\circ} \mathrm{C}$
3.2 Maximum current (I max): 1.0 mA
3.3 Maximum power (P max): 5mW
4.

Shape and dimension

NO.	Specific ation \& material
1.	Chip themistor
2.	Epoxy resin
3.	$\phi 0.4 \mathrm{CP} / \mathrm{Sn}$ Wire

6, Reliability characteristics test
6. 1 temp. cycle(in air)
$-30^{\circ} \mathrm{C} \times 5 \mathrm{~min}=25^{\circ} \mathrm{C}+100^{\circ} \mathrm{C} \times 5 \mathrm{~min} \quad 500 \mathrm{cycles}$ $\triangle R / R \leqslant 2 \%$
6. 2 High temp. test
placed for 1000 hours, at $100^{\circ} \mathrm{C}$ (in air)
$\triangle R / R \leqslant 2 \%$
6. 3 Low temp. test placed for 1000 hours, at $-30^{\circ} \mathrm{C}$ (in air) $\triangle R / R \leqslant 2 \%$
6. 4 High temp. humidity test $40^{\circ} \mathrm{C}-95 \%$ R.H., placed r 1000 hours. $\triangle R / R \leqslant 2 \%$
6.5 Transfer test
$1.0 \mathrm{~mA} \times 40$ days.
$\triangle R / R \leqslant 2 \%$

7, Control the air temperature blowed the thermistor head to Max. $250^{\circ} \mathrm{C}$ when adding a hea shrink potecting tube . And the outlet of hot air bower should be of sone distance to the themistor lest excessively heated Over hea shock will cause resistance value drift.

